Synthetic nucleases for genome engineering in plants: prospects for a bright future.
نویسندگان
چکیده
By inducing double-strand breaks (DSB), it is possible to initiate DNA recombination. For a long time, it was not possible to use DSB induction for efficient genome engineering due to the lack of a means to target DSBs to specific sites. This limitation was overcome by development of modified meganucleases and synthetic DNA-binding domains. Domains derived from zinc-finger transcription factors or transcription activator-like effectors may be designed to recognize almost any DNA sequence. By fusing these domains to the endonuclease domains of a class II restriction enzyme, an active endonuclease dimer may be formed that introduces a site-specific DSB. Recent studies demonstrate that gene knockouts via non-homologous end joining or gene modification via homologous recombination are becoming routine in many plant species. By creating a single genomic DSB, complete knockout of a gene, sequence-specific integration of foreign DNA or subtle modification of individual amino acids in a specific protein domain may be achieved. The induction of two or more DSBs allows complex genomic rearrangements such as deletions, inversions or the exchange of chromosome arms. The potential for controlled genome engineering in plants is tremendous. The recently discovered RNA-based CRISPR/Cas system, a new tool to induce multiple DSBs, and sophisticated technical applications, such as the in planta gene targeting system, are further steps in this development. At present, the focus remains on engineering of single genes; in the future, engineering of whole genomes will become an option.
منابع مشابه
Genome Editing Using Crispr/Cas System: New Era Genetic Technology in Agriculture to Boost Crop Output
Genome engineering with the RNA-guided CRISPR-Cas9 system in animals and plants is revolutionizing biology. First techniques of genome editing like zinc finger nucleases and synthetic nucleases called TALENs were a starting point but turned out to be expensive, difficult to handle and timeconsuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies...
متن کاملSmall Hydro-Power Plants in Kenya: A Review of Status, Challenges and Future Prospects
Small Hydro-power Plants (SHP) are an important source of electricity in many countries. However, little is known about SHP in Kenya. This paper reviews the status, challenges in implementation of SHP and prospects for future development of SHP in Kenya. The paper shows that SHP has not yet fully utilized the available hydro-power potential. The challenges associated with SHP development should...
متن کاملGenome engineering with zinc-finger nucleases.
Zinc-finger nucleases (ZFNs) are targetable DNA cleavage reagents that have been adopted as gene-targeting tools. ZFN-induced double-strand breaks are subject to cellular DNA repair processes that lead to both targeted mutagenesis and targeted gene replacement at remarkably high frequencies. This article briefly reviews the history of ZFN development and summarizes applications that have been m...
متن کاملCRISPR/Cas9: A Practical Approach in Date Palm Genome Editing
The genetic modifications through breeding of crop plants have long been used to improve the yield and quality. However, precise genome editing (GE) could be a very useful supplementary tool for improvement of crop plants by targeted genome modifications. Various GE techniques including ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases), and most recently clu...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 78 5 شماره
صفحات -
تاریخ انتشار 2014